\(\dfrac{9ab}{ab+a+b}\)\(\le\)1+a+b
\(\Rightarrow\)9ab\(\le\)(1+a+b)(a+b+ab)
Xét 9ab = [3\(\sqrt{ab}\)]\(^2\) = [\(\sqrt{ab}\) + \(\sqrt{ab}\) + \(\sqrt{ab}\)]\(^2\) = [1.\(\sqrt{ab}\) + \(\sqrt{a}\).\(\sqrt{b}\)+ \(\sqrt{b}\).\(\sqrt{a}\)]\(^2\) ≤ (1\(^2\) + a + b)( ab + b + a)
Dấu = xảy ra khi a = b = 1