Chứng minh rằng: \(\dfrac{1 + 3 + 5 + ... + 39}{21 + 22 + 23 + ... + 40} = \dfrac{1}{2^{20}}\)
1)
Cho \(\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{200}\)
Chứng minh: \(A>\dfrac{9}{10}\)
2)
Cho \(B=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
Chứng minh: \(B>\dfrac{7}{12}\)
HELP ME!!!!!!!!
Tìm x :
a. \(x-\dfrac{20}{11.13}-\dfrac{20}{13.15}-\dfrac{20}{15.17}-....-\dfrac{20}{53.55}\)
b. \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
Chứng minh \(⋮\) 31
Tìm x
a. \(x-\dfrac{20}{11.13}-\dfrac{20}{13.15}-\dfrac{20}{15.17}-...-\dfrac{20}{53.55}\)
b. \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
Bài 1: Chứng tỏ rằng :
\(\dfrac{11}{15}< \dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{60}< \dfrac{3}{2}\)
Bài 2: Chứng tỏ rằng:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+......+\dfrac{1}{n^2}< 1\)
\(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}< \dfrac{1}{2}\)
tính theo cách hợp lý
a)\(\dfrac{4}{20}+\dfrac{16}{42}+\dfrac{6}{15}+\dfrac{-3}{5}+\dfrac{2}{21}+\dfrac{-40}{21}+\dfrac{3}{20}\)
B)\(\dfrac{42}{46}+\dfrac{250}{186}+\dfrac{-2121}{2323}+\dfrac{-125125}{143143}\)
Cho \(A=\dfrac{11}{9}+\dfrac{18}{16}+................+\dfrac{1766}{1764}\)Chứng minh rằng \(40\dfrac{23}{43}< A< 40\dfrac{20}{21}\)
Help me!!!!!!!!!!!
Không dùng máy tính bỏ túi hãy chứng minh S >1
S = \(\dfrac{5}{20}\)+\(\dfrac{5}{21}\)+\(\dfrac{5}{22}\)+\(\dfrac{5}{23}\)+\(\dfrac{5}{24}\)
Bài 7 cho S =\(\dfrac{1}{3}+\dfrac{1}{16}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{61}+\dfrac{1}{72}+\dfrac{1}{91}+\dfrac{1}{94}\)
So sánh S với \(\dfrac{3}{5}\)