Cho S = \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\). Hãy so sánh S và \(\dfrac{1}{2}\)
Cho S =\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)
Hãy so sánh S và \(\dfrac{1}{2}\)
Các bạn giúp mình nhé mình đang cần gấp
Cho A = \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4026}\)
B = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4025}\)
So sánh \(\dfrac{A}{B}\)với \(1\dfrac{2013}{2014}\)
1, Tính
\(-2\dfrac{1}{4}.\left(3\dfrac{5}{12}-1\dfrac{2}{9}\right)\)
\(\left(-25\%+0,75+\dfrac{7}{12}\right):\left(-2\dfrac{1}{8}\right)\)
2, Tính nhanh
\(\dfrac{4}{9}.19\dfrac{1}{3}-\dfrac{4}{9}.39\dfrac{1}{3}\) | \(19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}.\dfrac{12}{7}\)
\(\dfrac{-5}{7}.\dfrac{5}{11}+\dfrac{-5}{7}.\dfrac{2}{11}-\dfrac{5}{7}:\dfrac{11}{14}\) | \(\dfrac{4}{7}.\dfrac{89}{5}-\dfrac{4}{5}.\dfrac{82}{7}\)
\(\dfrac{5}{7}.\dfrac{-4}{19}+\dfrac{-15}{7}.\dfrac{5}{19}\) | \(8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\)
- Giải hộ với ạ, mấy anh, chị lớp 7,8 cũng được huhu :(( sáng mai nộp đề cương rồi. Làm ơn đi a
Muốn gì cũng hậu tạ :>
Bài 1: Chứng tỏ rằng :
\(\dfrac{11}{15}< \dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{60}< \dfrac{3}{2}\)
Bài 2: Chứng tỏ rằng:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+......+\dfrac{1}{n^2}< 1\)
\(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}< \dfrac{1}{2}\)
cho A=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\)
So sánh A với\(\dfrac{1}{4}\)
BT1: Tính
4) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{264}}{\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}}+\dfrac{5}{8}\)
\(B=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+....+\dfrac{1}{2^{99}}\)
So sánh B với 50
Tính nhanh:
11) \(\dfrac{5}{7}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{4}{7}\right)+\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{4}{7}\right):\dfrac{7}{5}\)
12)\(\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}+2\right)-\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}\right)\)