\(u_{n+1}-u_n\)
\(=\sqrt{u_n+2}-u_n\)
\(=\dfrac{u_n+2-u_n^2}{\sqrt{u_n+2}+u_n}=\dfrac{-\left(u_n-2\right)\left(u_n+1\right)}{\sqrt{u_n+2}+u_n}\)
\(u_{n+1}=\sqrt{u_n+2}\)
=>\(u_{n+1}^2=u_n+2\)
=>\(u_{n+1}^2-4=u_n-2\)
=>\(\left(u_{n+1}-2\right)\left(u_{n+1}+2\right)=u_n-2\)
Để \(u_n< 2\) thì \(u_n-2< 0\)
=>\(u_{n+1}-2< 0\)
=>\(u_n< 2\forall n>=1\)
=>\(u_{n+1}-u_n>0\)
=>Đây là dãy tăng và bị chặn trên bởi 2