Ta có: \(a^3-25a\)
\(=a^3-a-24a\)
\(=a\left(a^2-1\right)-24a\)
\(=\left(a-1\right)\cdot a\cdot\left(a+1\right)-24a\)
Vì a-1; a và a+1 là ba số nguyên liên tiếp nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3\)(1)
Ta có: a-1 và a là hai số nguyên liên tiếp
nên \(\left(a-1\right)\cdot a⋮2\)
\(\Leftrightarrow\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮2\)(2)
mà (2;3)=1(3)
nên từ (1), (2) và (3) suy ra \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮6\)
mà \(24a⋮6\)
nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)-24a⋮6\)
hay \(a^3-25a⋮6\)(đpcm)