\(\left(a^2+b^2\right)\ge2ab\)
\(\left(a^2+1\right)\ge2a\)
Do đó: \(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\)
\(\left(a^2+b^2\right)\ge2ab\)
\(\left(a^2+1\right)\ge2a\)
Do đó: \(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\)
cho a,b,c > 0 chứng minh a^2/c + b^2/a + c^2/b lớn hơn hoặc bằng a + b + c
cho 0'a'2; 0'b'2;0'c'2 và a+b+c =3 . Chứng minh a^2+b^2+c^2'5. (dấu ' là dấu bé hơn hoặc bằng)
cm bđt a^2 /b+c + b^2/c+a + c^2/a+b lớn hơn hoặc bằng a + b + c / 2 biết a,b,c >0
Cho a/b+c + b/c+a + c/a+b = 1. Chứng minh rằng: a/b+c + b/c+a + c/a+b=1. Chứng minh rằng a^2/b+c + b^2/c+a + c^2/a+b
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
BT1:Cho m2+n2=1 và a2+b2=1.Chứng minh rằng: -1<am+bn<1
BT2:Cho 4 số thỏa mãn a,b,c,d thỏa mãn a.b=1 và ac+bd=2
Chứng minh rằng 1-cd không âm
BT3: Cho a,b,c là các số thực bất kì . Chứng minh rằng
3(ab+bc+ca)=< (a+b+c)2=<3(a2+b2+c2)
Chứng minh: a5-a chia hết cho 30 với a\(\in Z\)
Chứng minh rằng: x5-x+2 không là số chính phương với mọi x\(\in Z\)
Chứng minh rằng nếu a,b, c là các số hữu tỉ và ab+bc+ac=1 thì (1+a2)(1+b2)(1+c2) bằng bình phương của số hữu tỉ
chứng minh 2^n > n^3 ( n lớn hơn hoặc bằng 10 , n thuộc N )
Bài tập 1:
Cho x,y > 0. Chứng minh rằng: ( 3x+3y )(\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\)) ≥4
Bài tập 2: Cho a,b,c> 0. Chứng minh rằng:
a) \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\)≤\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
b) \(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\)≤\(\dfrac{3}{2}\)