a)
$7^6+7^5-7^4=7^4(7^2+7-1)=7^4.55$ chia hết cho $55$.
b) Áp dụng $a^n+b^n$ sẽ chia hết cho $a+b$ với $n$ lẻ.
$16^5+2^{15}=16^5+8^5$ sẽ chia hết cho $16+5=24$ nên sẽ chia hết cho $3$.
Giờ chỉ cần chứng minh cái đó chia hết cho $11$.
Thật vậy:
$16^5 \equiv 5^5 \equiv 1(mod 11)
\\2^{15} \equiv (2^5)^3 \equiv 32^3 \equiv (-1)^3 \equiv -1 (mod 11)
\\\Rightarrow 16^5+2^{15} \equiv 1-1=0(mod 11)$
Do đó có đpcm
\(A=7^6+7^5-7^4\)
\(A=7^4.7^2+7^4.7-7^4.1\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4.55\)
\(A⋮55\rightarrowđpcm\)
\(B=16^5+2^{15}\)
\(B=\left(2^4\right)^5+2^{15}\)
\(B=2^{20}+2^{15}\)
\(B=2^{15}.2^5+2^{15}.1\)
\(B=2^{15}\left(2^5+1\right)\)
\(B=2^{15}.33\)
\(B⋮33\rightarrowđpcm\)