a)56.16 + 17.243 (mod 16)
b)67.32 + 34.944 (mod 31) c) 786.123 + 73.49 (mod 12) 2. Chứng minh rằng: 3 2n+1 + 5 chia hết cho 8 với mọi số tự nhiên n 3. Chứng minh rằng: n n−1 + n n−2 + n n−3 + ... + n 3 + n 2 + n chia hết cho n − 1 với mọi số tự nhiên n > 1 Giúp mình với ạ, cảm ơn!Chứng minh rằng:
\(3^{n+1}-2^{n+1}+\) \(3^{n-1}-2^{n-1}\) chia hết cho 10 với mọi số tự nhiên n >1
a) tìm giá trị nhỏ nhất của biểu thức C = / x- 2017 / + 2018 / / x - 2017 / +2019
b) chứng tỏ rằng S = 3/4 + 8/9 + 15 / 16 + ... + n2 - 1/ n2 không là số tự nhiên với mọi hình thức n ∈ N ; n > 2
Cho S=\(\dfrac{1}{5^2}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+...+\dfrac{2017}{5^{2017}}+\dfrac{2018}{5^{2018}}\).Chứng minh S<\(\dfrac{1}{3}\)
Cho S = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
P = \(1+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}\)
Chứng minh rằng: \(\left(S-P\right)^{2018}=1\)
Chứng minh với mọi \(n\in N;n>1\) Ta có:
\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+.........+\dfrac{1}{n^3}< \dfrac{1}{4}\)
1 ) tìm giá trị nhỏ nhất của biểu thức : A = | x - 2017 | + | x + 2018 |
2 ) chứng minh : 1 + 1/1! + 1/2! + 1/3! + ... + 1/2017! <3 Các cậu giúp tớ với Tớ cần gấp lắm ấy ạA=1/2+1/3+1/4+...+1/2019;B=1/2018 +2/2017+3/2016+...+2017/2+2018/1.Tính A/B
Chứng minh rằng 2n^3-n-1 chia hết cho 9 với mọi số tự nhiên n lớn hơn hoặc bằng 2