Bài 7. Lập phương của một tổng. Lập phương của một hiệu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Chứng minh \({\left( {a - b} \right)^3} =  - {\left( {b - a} \right)^3}\) 

Hà Quang Minh
12 tháng 1 2024 lúc 21:40

\(\begin{array}{l}{\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\\ - {\left( {b - a} \right)^3} =  - \left( {{b^3} - 3{b^2}a + 3b{a^2} - {a^3}} \right) = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\end{array}\)

Vậy \({\left( {a - b} \right)^3} =  - {\left( {b - a} \right)^3}\) (đpcm).


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Buddy
Xem chi tiết