a: \(A=\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(=\sqrt{2}-1-\sqrt{2}-1\)
=-2
b: \(B=2\left(\sqrt{5}-2\right)-\left(2\sqrt{5}-1\right)\)
\(=2\sqrt{5}-4-2\sqrt{5}+1=-3\)
a: \(A=\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(=\sqrt{2}-1-\sqrt{2}-1\)
=-2
b: \(B=2\left(\sqrt{5}-2\right)-\left(2\sqrt{5}-1\right)\)
\(=2\sqrt{5}-4-2\sqrt{5}+1=-3\)
Tính giá trị các biểu thức sau:
a. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
b. \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
Tính giá trị biểu thức (Nhân thêm số căn vào biểu thức để làm xuất hiện hằng đẳng thức \(\left(a\pm\sqrt{b}\right)^2\) hoặc \(\left(\sqrt{a}\pm\sqrt{b}\right)^2\) rồi phá căn)
a. \(\left(4\sqrt{2}+\sqrt{30}\right).\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
b. \(\dfrac{\sqrt{3}+1}{2}.\sqrt{8-2\sqrt{3}}\)
Rút gọn các biểu thức :
a) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
c)\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
Rút gọn biểu thức
\(a.\dfrac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
\(b.x\sqrt{2x+2}+\left(x+1\right)\sqrt{\dfrac{2}{x+1}}-4\sqrt{\dfrac{x+1}{2}}\)
Cho M= \(\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) Rút gọn M
b) Tìm các giá trị của x để có \(\dfrac{5}{3}M\) = \(\sqrt{x}+4\)
Bài 1 Rút gọn biểu thức:
a) \(\dfrac{\sqrt{3-\sqrt{5}.}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b) \(\dfrac{4}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}+\dfrac{6}{\sqrt{3}-3}\)
Rút gọn các biểu thức sau : ( giá trị các biểu thức chứa chữ đều có nghĩa )
a, \(5\sqrt{\frac{1}{5}}\) . \(\frac{1}{2}\sqrt{20}\) + \(\sqrt{5}\)
b, \(\sqrt{\frac{1}{2}}\) + \(\sqrt{4,5}\)
c, \(\sqrt{20}\) + \(\sqrt{45}\) - \(3\sqrt{75}\) + \(\sqrt{72}\)
d, \(5\sqrt{a}\) - \(4\sqrt{25a^2}\) + \(\sqrt{9a}\) - \(2\sqrt{16a}\)
e, \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}\) + \(\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
g, \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}\) + \(\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Giải 5 câu sau:
1. \(\dfrac{\sqrt{5}+2}{\sqrt{5}-2}\)
2. \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{2}-\sqrt{5}}\)
3. \(\dfrac{\sqrt{20}-3\sqrt{10}}{3-\sqrt{5}}\)
4. \(\dfrac{6-2\sqrt{5}}{3+\sqrt{5}}\)
5. \(\dfrac{9+4\sqrt{5}}{\sqrt{5}+2}\)
Chứng minh đẳng thức:\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)