Ta có : \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n-1}-\sqrt{n}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n-1}-\sqrt{n}\right)}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n-1}-\sqrt{n}}{n-1-n}\)
\(=\frac{\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n-1}-\sqrt{n}}{-1}\)
\(=\frac{\sqrt{1}-\sqrt{n}}{-1}=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)