\(\dfrac{a+b+c}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3c\right)}+\sqrt{c\left(c+3a\right)}}\)
\(=\dfrac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}\)
\(\ge\dfrac{2\left(a+b+c\right)}{\dfrac{4a+a+3b}{2}+\dfrac{4b+b+3c}{2}+\dfrac{4c+c+3a}{2}}\)
\(=\dfrac{2\left(a+b+c\right)}{4\left(a+b+c\right)}=\dfrac{1}{2}\left(đpcm\right)\)
- Dấu "=" xảy ra khi \(a=b=c\)