Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 3: Rút gọn phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Nga Nguyễn thị

Chứng minh đẳng thức:

\(\dfrac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\dfrac{a+1}{a-2}\)

                                       \(\dfrac{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}{x^2y^2+1+\left(x^2+y\right)\left(1+y\right)}=\dfrac{y^2-y+1}{y^2+y+1}\)

 

Akai Haruma
1 tháng 12 2021 lúc 23:12

Lời giải:
1.

\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a^2(a-4)-(a-4)}{(a^3-8)-(7a^2-14a)}=\frac{(a-4)(a^2-1)}{(a-2)(a^2+2a+4)-7a(a-2)}\)

\(=\frac{(a-4)(a-1)(a+1)}{(a-2)(a^2-5a+4)}=\frac{(a-4)(a-1)(a+1)}{(a-2)(a-1)(a-4)}=\frac{a+1}{a-2}\)

2.

\(\frac{x^2y^2+1+(x^2-y)(1-y)}{x^2y^2+1+(x^2+y)(1+y)}=\frac{x^2y^2+1+x^2-x^2y-y+y^2}{x^2y^2+1+x^2+x^2y+y+y^2}\)

\(=\frac{(x^2y^2-x^2y+x^2)+(y^2-y+1)}{(x^2y^2+x^2y+x^2)+(y^2+y+1)}\)

\(=\frac{x^2(y^2-y+1)+(y^2-y+1)}{x^2(y^2+y+1)+(y^2+y+1)}=\frac{(x^2+1)(y^2-y+1)}{(x^2+1)(y^2+y+1)}=\frac{y^2-y+1}{y^2+y+1}\)


Các câu hỏi tương tự
Nguyễn Quyết
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
Dương Tinh Tú
Xem chi tiết
Sarah
Xem chi tiết
Loveduda
Xem chi tiết
Khánh Vân
Xem chi tiết
Thái Đào
Xem chi tiết
Alice
Xem chi tiết
Phàn Tử Hắc
Xem chi tiết