Có \(\left(x+y+z\right)^3\)
\(=\left[\left(x+y\right)+z\right]^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3\)
\(=x^3+3x^2y+3xy^2+y^3+3\left(x+y\right)\left[\left(x+y\right)z+z^2\right]+z^3\)
\(=x^3+y^3+z^3+3xy\left(x+y\right)+3\left(x+y\right)\left(xz+yz+z^2\right)\)
=\(x^3+y^3+z^3+3\left(x+y\right)\left(xz+xy+yz+z^2\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có: (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x)
\(\Leftrightarrow\) (x + y + z)3 - x3 - y3 - z3 = 3(x + y)(y + z)(z + x)
Phân tích VT ta được:
(x + y + z)3 - x3 - y3 - z3 = \(\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
= (x + y)3 + z3 + 3z(x + y)(x + y + z) - x3 - y3 - z3
= x3 + y3 + 3xy(x + y) + z3 + 3z(x + y)(x + y + z) - x3 - y3 - z3
= 3xy(x + y) + 3z(x + y)(x + y + z)
= 3(x +y)(xy + xz + yz + z2)
= 3(x +y)\(\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
= 3(x + y)(y + z)(z + x) (đpcm)
Bài này cần áp dụng công thức (x + y)3 = x3 + y3 + 3xy(x + y) nhiều lần để phân tích nhé bạn.