Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thu Trang

Chứng minh đẳng thức:

a) \(\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\dfrac{a-1}{1+\sqrt{a}}\right)=\sqrt{a-1}\) với \(a\ge0\)\(a\ne1\)

b) \(\left(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\div\dfrac{\sqrt{ab}}{a-b}=4\) (\(a,b>0\) ; \(a\ne b\))

Giải gấp giùm luôn nha mấy bạn, mình cần gấp trong ngày hôm nay ạ!!! :((

Học tốt
21 tháng 9 2018 lúc 21:10

a)

\(\Leftrightarrow\left(\dfrac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{1+\sqrt{a}}\right)\)\(\Leftrightarrow\left(a-\sqrt{a}+1-\sqrt{a}\right):\left(\sqrt{a}-1\right)\)

\(\Leftrightarrow\left(a-2\sqrt{a}+1\right):\left(\sqrt{a}-1\right)\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2:\left(\sqrt{a}-1\right)\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)\)