Ta có: \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Vì \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\left(đpcm\right)\)
Chứng minh
\(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{1}{n}-\dfrac{1}{n+1}\)
Ta có:VP=\(\dfrac{1}{n}-\dfrac{1}{n+1}\)=
\(\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
=\(\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}=VT\)(đpcm)