\(\left(\sqrt[3]{x}+1\right)^3-\left(\sqrt[3]{x}-1\right)^3-6\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x}+1\right)\\ =x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1-\left(x-3\sqrt[3]{x^2}+3\sqrt[3]{x}-1\right)-6\left(\sqrt[3]{x^2}-1\right)\\ =x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1-x+3\sqrt[3]{x^2}-3\sqrt[3]{x}+1-6\sqrt[3]{x^2}+6\\ =8\)
Lời giải:
Gọi biểu thức là $A$
\(A=(x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1)-(x-3\sqrt[3]{x^2}+3\sqrt[3]{x}-1)-6(\sqrt[3]{x^2}-1)\)
\(6\sqrt[3]{x^2}+2-6(\sqrt[3]{x^2}-1)=8\) là giá trị không phụ thuộc vào biến.