Cho A= x3 + y3 - 3(x + y) + 2020. Tính giá trị biểu thức A với:
x = \(\sqrt[3]{9+4\sqrt{5}}\) + \(\sqrt[3]{9-4\sqrt{5}}\) và y=\(\sqrt[3]{3+2\sqrt{2}}\) + \(\sqrt[3]{3+2\sqrt{2}}\)
Các bạn giúp mk nhanh nhé mk đang cần gấp
1.Tính các giá trị biểu thức:
a.\(x=\sqrt[3]{5+2\sqrt{3}}+\sqrt[3]{5-2\sqrt{3}}\)
b.\(x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
c.\(x=\sqrt[3]{182+\sqrt{33125}}+\sqrt[3]{182-\sqrt{33125}}\)
d.\(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
a.Cmr nếu \(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\) thì \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
b.Giải pt \(x^3-x^2-1=\dfrac{1}{3}\)
cho x =\(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
y =\(\sqrt[3]{17+2\sqrt{2}}+\sqrt[3]{17-2\sqrt{2}}\)
Tính M=\(x^3+y^3-3\left(x+y\right)+2004\)
Tính giá trị các biểu thức:
a)( \(\frac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\frac{1}{3}}\)) : \(2\sqrt[3]{\frac{1}{3}}\)
b)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\left(5\sqrt[3]{4}-3\sqrt[3]{\frac{1}{2}}\right)\)
Giải phương trình
\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x-27\)
\(\sqrt{x+3}+\sqrt{y-2}+\sqrt{z-3}=\dfrac{1}{2}\left(x+y+z\right)\)
\(x+y+4=2\sqrt{x}+4\sqrt{y-1}\)
\(x^2+9x+20=2\sqrt{3x+10}\)
a) \(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
b) \(\dfrac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
c) \(\dfrac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
Rút gọn các biểu thức sau
Rút gọn các biểu thức:
a) A= \(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}\sqrt[3]{4}\)
b) B= \(\left(\frac{1}{2}\sqrt[3]{2}-\frac{1}{4}\sqrt[3]{16}\right).\sqrt[3]{4}\)
c) C= \(\sqrt[3]{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)
d) D= \(\sqrt[3]{3+3\sqrt[3]{2}+3\sqrt[3]{4}}\)
e) E= \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)