Ta có:
\(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)
\(\Leftrightarrow\frac{1}{\left(k+1\right)\sqrt{k}}-2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)< 0\)
\(\Leftrightarrow\frac{1-2k-2+2\sqrt{k\left(k+1\right)}}{\sqrt{k}\left(k+1\right)}< 0\)
Lại có: \(k>0\)
\(\Rightarrow k+1>0\)
\(\Rightarrow\sqrt{k}\left(k+1\right)>0\)
\(\Rightarrow-1-2k+2\sqrt{k\left(k+1\right)}< 0\)
Áp dụng BĐT Cô-si ta có:
\(k+\left(k+1\right)\ge2\sqrt{k\left(k+1\right)}\)
\(\Leftrightarrow2k+1\ge2\sqrt{k\left(k+1\right)}\)
\(\Leftrightarrow2\sqrt{k\left(k+1\right)}-2k-1\le0\forall k>0\)
Vậy \(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)