Sửa đề: \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Ta xét \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+a\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(b-1\right)^2\ge0\) Đúng \(\forall a;b;c\in R\)
Vậy \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\). Dấu \("="\)xảy ra khi \(a=b=c=1.\)