Chứng minh bằng qui nạp
a/ với 2 \(\le n\in Z\). CMR: 2< \(\left(1+\dfrac{1}{n}\right)^n< 3\)
b/ Với x, y > 0 và n \(\in N\)*. CMR : \(\left(x^2+y^2\right)^n\ge2^nx^ny^n+\left(x^n-y^n\right)^2\)
c/ Cho a+b = 2018. CMR : \(a^n+b^n\ge2.1009^n\). với mọi n\(\in\)N*
chứng minh bằng pp quy nạp \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
Chứng minh bằng phản chứng:
1/ Với 2\(\le n\in Z\) CMR: 2<(1+\(\dfrac{1}{n}\))\(^n\)<3
2/ Với mọi x, y>0 và n \(\in\)Z. CMR:
\(\left(x^2+y^2\right)^n\ge2^nx^ny^n+\left(x^n-y^n\right)^2\)
3/Cho a, b thỏa mãn: a+b = 2018. CMR: \(a^n+b^n\ge2.1009^n\) vỡi mọi n \(\in\)N*
Chứng minh bằng phương pháp phản chứng định lý : Với mọi số nguyên dương n, nếu n2+4n+2 chia hết cho 4 thì n chia hết cho 4 .
Chứng minh: (2m - 1; 2n - 1) = 2(m; n) - 1
Dùng phương pháp chứng minh phản chứng để cmr:
a) \(\sqrt{n} + \sqrt{n+1}\) là một số vô tỉ với mọi n là số tự nhiên
b) \(\sqrt{n + \sqrt{n}}\) là một số vô tỉ với mọi n là số tự nhiên
1,CM bằng phản chứng:" Nếu pt bậc 2 ax2 + bx + c = 0 thì a và c cùng dấu
2,CM bằng phản chứng: Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác
3, Cho a, b, c dương < 1. CMR ít nhất 1 trong 3 BĐT sau sai: \(a\left(1-b\right)>\frac{1}{4},b\left(1-c\right)>\frac{1}{4},c\left(1-a\right)>\frac{1}{4}\)
4, Nếu a1a2 \(\ge\) 2(b1 + b2) thì ít nhất 1 trong 2 pt x2 + a1x + b1 = 0, x2 +a2x + b2 = 0 có nghiệm
5, Cho các số a, b, c thỏa mãn: a + b + c = 0(1), ab + bc + ca > 0(2), abc > 0(3)
CMR cả 3 số đều dương
6, CM bằng phản chứng:"Nếu tam giác ABC có các đường phân giác trong BE = CF thì tam giác ABC cân".
Mệnh đề sau đây đúng hay sai. Chứng minh:
Với mọi n thuộc N, n^2+1 không chia hết cho 3
Chứng minh bằng phản chứng: Với các số tự nhiên a, b nếu a^2 + b^2 chia hết cho 8 thì a, b không thể đồng thời là số lẻ