Bài 9. Cho tam giác ABC. Phát biểu mệnh đề đảo của các mệnh đề sau: a) Nếu AB BC CA thì tam giác ABC đều; b) Nếu AB BC thì C A ; c) Nếu 0 A 90 thì ABC là tam giác vuông
Cho tam giác ABC. Phát biểu mệnh đề đảo của các mệnh đề sau và xét tính đúng sai của chúng ?
a) Nếu AB = BC = CA thì tam giác ABC là một tam giác đều.
b) Nếu AB > BC thì \(\widehat{C}>\overrightarrow{A}\)
c) Nếu \(\widehat{A}=90^0\) thì ABC là một tam giác vuông
Cho các mệnh đề kéo theo
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c (a, b, c là những số nguyên)
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5
Tam giác cân có hai đường trung tuyến bằng nhau
Hai tam giác bằng nhau có diện tích bằng nhau
a. Hãy phát biếu mệnh đề đảo của mỗi mệnh đề trên
b. Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện đủ"
c. Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện cần"
Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
Cho các mệnh đề kéo theo
Nếu a và b cùng chia hết cho c thì a+b chia hết cho c (a, b, c là những số nguyên).
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5.
Tam giác cân có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau có diện tích bằng nhau.
a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.
b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện đủ”.
c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện cần”.
1.Chứng minh mệnh đề sau: Nếu a,b\(\ge\)0 thì: a+b\(\ge\)2.\(\sqrt{ab}\)
1) Với mọi số nguyên dương n, nếu n2 là số lẻ thì n là số lẻ
2) Với mọi số nguyên dương n, nếu n2 chia hết cho 3 thì n chia hết cho 3
3) Với 2 số dương a và b thì a+ b ≥ 2√ab
4) Nếu x2 + y2 =0 thì x= 0 và y=0
5) Nếu x ≠ -1 và y≠ -1 thì x+y+ xy = -1
6) Nếu tổng 2 số thực lớn hơn 2 thì ít nhất một trong 2 số đó lớn hơn 1
Cm
Xét tính Đ/S và c/m mệnh đề sau
A: '' nếu ∀ n ∈ N và n2 ⋮ 5 thì n⋮ 5 "
B: " ∀ x ∈ N và n2 ⋮ 6 thì n⋮ 6 "
C : '' nếu 2a - 1 là số nguyên tố thì a là số nguyên tố "
D: " nếu x≥y thì x3 ≥ y3 "
1,CM bằng phản chứng:" Nếu pt bậc 2 ax2 + bx + c = 0 thì a và c cùng dấu
2,CM bằng phản chứng: Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác
3, Cho a, b, c dương < 1. CMR ít nhất 1 trong 3 BĐT sau sai: \(a\left(1-b\right)>\frac{1}{4},b\left(1-c\right)>\frac{1}{4},c\left(1-a\right)>\frac{1}{4}\)
4, Nếu a1a2 \(\ge\) 2(b1 + b2) thì ít nhất 1 trong 2 pt x2 + a1x + b1 = 0, x2 +a2x + b2 = 0 có nghiệm
5, Cho các số a, b, c thỏa mãn: a + b + c = 0(1), ab + bc + ca > 0(2), abc > 0(3)
CMR cả 3 số đều dương
6, CM bằng phản chứng:"Nếu tam giác ABC có các đường phân giác trong BE = CF thì tam giác ABC cân".