Bài 1. Chứng minh:
A= \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)
Chứng minh :
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2008^2}< 1\)
Giúp mk vs mn ơi!!!!!!
Bài tập: Chứng minh \(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2014}}>\frac{1}{2^{2015}}\)
Chứng minh \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+ .... + \(\frac{1}{2009^2}\)< 1
Cho S = \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\) . Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\).
Cho A = \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...........+\frac{n}{5^{n+1}}+........+\frac{11}{5^{12}}\)với n \(\in\)N . Chứng minh rằng A < \(\frac{1}{6}\)
Bài 2. Chứng minh:
B= \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
a,A=\(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
b,B=\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{998\times999\times100}\)
c,C=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1\times98+2\times97+3\times96+...+98\times1}\)
chứng minh rằng
\(\frac{2}{n.\left(n+1\right).\left(n+2\right)}=\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
áp dụng tính
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..............+\frac{1}{2015.2016.2017}\)