Ta có:
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{99}{100}< \frac{100}{100}=1\)
Vậy: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
Vậy \(A< 1\) (Đpcm)
Làm lại nha cái kia bị lỗi mất rồi .-.
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< \frac{100}{100}\)
\(=1\)
Vậy \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)