Cho a,b,c >0 thoar manx ab + bc + ca =5abc
CMR: \(P=\frac{1}{2a+2b+2c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\le1\)
Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)
Bài 1: a) Chứng minh: (ac+bd)2+(ad-bc)2=(a2+b2)(c2+d2)
b) Chứng minh bất đẳng thức Bunhiacoopxki(ac+bd)2\(\le\) (a2+b2)(c2+d2)
Help me !!!!!!!!!!!
cho a,b,c là các số dương và a+b+c=1
chứng minh rằng \(\dfrac{ab}{ab+c}+\dfrac{bc}{bc+a}+\dfrac{ca}{ca+b}\ge\dfrac{3}{4}\)
Chứng minh rằng: a2 + b2 + c2 ≥ ab + bc + ca
cho a,b,c là các số dương và a+b+c=1
chứng minh rằng \(\dfrac{ab}{ab+c}+\dfrac{bc}{bc+a}+\dfrac{ca}{ca+b}\ge\dfrac{3}{4}\)
Giải giúp mình với!!!!
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của (O) cắt BC tại S. Gọi I là trung điểm của BC.
a) Chứng minh tứ giác SAOI nội tiếp
b) Vẽ dây cung AD vuông góc với SO tại H. AD cắt BC tại K. Chứng minh SD là tiếp tuyến của đường tròn (O)
c) Chứng minh SK.SI = SB.SC
d) Vẽ đường kính PQ đi qua điểm I (Q thuộc cung CD), SP cắt đường tròn (O) tại M. Chứng minh M, K, Q thẳng hàng
Help me
Cho a, b, c là các số dương thoả mãn: a+b+c=1. Chứng minh bất đẳng thức: \(\sqrt{ab+c}\) + \(\sqrt{bc+a}\) + \(\sqrt{ca+b}\) ≤ 2