Ta có:
\(\left(a-1\right)^2\ge0\Leftrightarrow a^2-2a+1\ge0\Leftrightarrow a^2+1\ge2a\) (1)
\(\left(b-1\right)^2\ge0\Leftrightarrow b^2-2b+1\ge0\Leftrightarrow b^2+1\ge2b\) (2)
\(\left(c-1\right)^2\ge0\Leftrightarrow c^2-2c+1\ge0\Leftrightarrow c^2+1\ge2c\) (3)
Từ (1), (2) và (3) suy ra;
\(a^2+1+b^2+1+c^2+1\ge2a+2b+2c\)
<=> \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
<=> \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\) \(\xrightarrow[]{}\) đpcm
Dấu "=" xảy ra khi a=b=c=1
Ta có: \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge+2a+2b+2c-3\)
\(\Leftrightarrow a^2+b^2+c^2\ge2\left(a+b+c\right)-3\) (đpcm)
Vậy \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)