Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Song tử ♊
Chovtam giác ABC vuông tại A, gọi M là trung điểm của BC. Kẻ MI vuông góc với AC tại I. Trên tia đối của tia MI lấy điểm N sao cho IN=IM. Gọi K là giao điểm của AB và CN. Trên tia đối của ta MA lấy điểm E sao cho ME=MA. C/m : a)tam giác IMC = tam giác INC b) CB=CK và N là trung điểm của CK c) AB//EC d) 3 điểm E, I, K thẳng hàng
Nguyễn Lê Phước Thịnh
8 tháng 1 2021 lúc 10:06

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)


Các câu hỏi tương tự
Song tử ♊
Xem chi tiết
Thơ Thiên
Xem chi tiết
Đoàng Ngân Khánh
Xem chi tiết
New year
Xem chi tiết
Rey
Xem chi tiết
WRC Remix
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Anh Tuấn Phạm
Xem chi tiết
Khánh Tạ Quốc
Xem chi tiết