a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Cho x,y,z là các số thực thỏa mãn \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Tính giá trị của biểu thức A =\(2016.x+y^{2017}+z^{2017}\)
Câu 1:
Giá trị nhỏ nhất của biểu thức C là \(\frac{1}{3}\left(x-\frac{2}{5}\right)^2\) + |2y+1| - 2,5
Câu 2:
Cho 2 số x,y thỏa mãn (2x +1)2 + |y-1,2| = 0. Giá trị x,y?
Câu 3:
Giá trị x = __ thì biểu thức D = \(\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2\) - |8x -1| + 2016 đạt giá trị lớn nhất?
Câu 4:
Các số tự nhiên n thỏa mãn \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
Cách giải luôn nhé!
Giá trị của biểu thức M= -2x^2y^3-4xy^2 thỏa mãn x=1 và y=2 là:
A. 16 B. -32 C. -16 D.0
tìm \(x\in Z\) để các biểu thức sau có giá trị lớn nhất và có giá trị nhỏ nhất :
1)A = \(\dfrac{1}{7-x}\) 2) B = \(\dfrac{8-x}{x-3}\)
3) C = \(\dfrac{27-2x}{12-x}\)
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Cho đa thức g(x)=2x-1 nếu x≥\(\dfrac{1}{2}\)
=-(2x-1) nếu x<\(\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của biểu thức M=\(\left|5x^{2^{ }}+5\right|+g\left(x\right)+2004-5x^2\)
Câu 1: a)Tìm x và y, biết rằng :(x-5)4+|y2 -4| = 0
b)Cho các số a,b,c >0 và \(\dfrac{a+b}{3}+\dfrac{b+c}{4}+\dfrac{c+a}{5}\)
Tìm giá trị của biểu thức :M = 10a +b -7c +2017
Câu 2:a)Tĩm, y biết :\(\dfrac{x^2+y^2}{10}+\dfrac{x^2-2y^2}{7}\) và x4y4 = 81
b)Cho 3 số a,b,c dương.Chứng tỏ rằng; M= \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\) không phải là 1 số nguyên
Cho x, y, z là các số thực thỏa mãn \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3z}{z}=\dfrac{1}{x+y+z}\)
Tính giá trị biểu thức: A = 2016x + y2017 + z2017