Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Mai Trang

Cho\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\); \(x^2+y^2=1\)

Tính \(\frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}\)

Akai Haruma
1 tháng 10 2018 lúc 23:23

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)

\(\Rightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)

Dấu "=" xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow \frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}=\left(\frac{x^2}{a}\right)^{1000}+\left(\frac{y^2}{b}\right)^{1000}\)

\(=\frac{1}{(a+b)^{1000}}+\frac{1}{(a+b)^{1000}}=\frac{2}{(a+b)^{1000}}\)

Truy kích
4 tháng 10 2018 lúc 21:17

Chu y dua ve bieu thuc dong bac de bien doi nhe

\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2+y^2\right)^2}{a+b}\)\(\Leftrightarrow\)\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{x^4+y^4-2x^2y^2}{a+b}\)

\(\Leftrightarrow\dfrac{bx^4\left(a+b\right)+\left(a+b\right)ay^4-ab\left(x^4+y^4-2x^2y^2\right)}{ab\left(a+b\right)}=0\)

\(\Leftrightarrow\dfrac{a^2y^4+b^2x^4-2abx^2y^2}{ab\left(a+b\right)}=0\)\(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)

\(\Leftrightarrow ay^2=bx^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)

\(\Leftrightarrow\dfrac{x^{2000}}{a^{1000}}=\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}\)

-->QED


Các câu hỏi tương tự
Nguyễn Thị Lan Anh
Xem chi tiết
ITACHY
Xem chi tiết
hello sunshine
Xem chi tiết
Nguyễn Quỳnh Trang
Xem chi tiết
tran gia vien
Xem chi tiết
Cao Thanh Trúc
Xem chi tiết
Tuan Minh Do Xuan
Xem chi tiết
Lâm Hoàng Tuấn Kiệt
Xem chi tiết
Quỳnh Hương
Xem chi tiết