Lời giải:
Phản chứng. Giả sử $x+y+z+t$ là số nguyên tố. Vì $x,y,z,t$ nguyên dương nên $x+y+z+t\geq 4$. Do đó nó là snt lẻ.
$\Rightarrow x+z$ và $y+t$ phải khác tính chẵn lẻ.
Không mất tính tổng quát, giả sử $x+z$ chẵn và $y+t$ lẻ. Khi đó:
$x^2+z^2=(x+z)^2-2xz$ chẵn
$y^2+t^2=(y+t)^2-2yt$ lẻ
Do đó $x^2+z^2$ không thể bằng $y^2+t^2$ (trái với giả thiết)
Vậy $x+y+z+t$ là hợp số.
hmm...
\(x^2+z^2=y^2+z^2\)
\(\Leftrightarrow x^2+y^2+z^2+t^2=2\left(y^2+z^2\right)\)
Do đó \(x^2+y^2+z^2+t^2⋮2\) (1)
Lại có: \(x^2-x⋮2;y^2-y⋮2;z^2-z⋮2;t^2-t⋮2\)
\(\Rightarrow x^2-x+y^2-y+z^2-z+t^2-t⋮2\)
Hay \(\left(x^2+y^2+z^2+t^2\right)-\left(x+y+z+t\right)⋮2\) (2)
Từ (1) và (2) suy ra \(x+y+z+t⋮2\)
Mà \(x,y,z,t\) đều là các số dương nên \(x+y+z+t>2\) => \(x+y+z+t\) là hợp số.