1: Cho a,b,c là độ dài 3 cạnh của 1 tam giác có tổng bằng 1. CMR: \(a^2+b^2+c^2+4abc< \dfrac{1}{2}\)
2: Cho -1<x,y,z<3 và x+y+z=1. CMR: \(x^2+y^2+z^2\le11\)
3: Cho x,y,z là các số \(\ge\)1 . CMR: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{3}{1+xyz}\)
4: Cho x>y và xy=1. CMR: \(\dfrac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
5: Cho a,b,c là độ dài 3 cạnh tam giác:
a)\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b)\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c)\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
cho các số x,y,z tùy ý . CMR : \(\dfrac{x^2+y^2+z^2}{3}>\left(\dfrac{x+y+z}{3}\right)^2\)
1: Cho x,y,z>0. CMR: \(\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)
2: Cho 0<x<\(\dfrac{1}{2}\). CMR: \(\dfrac{1}{x}+\dfrac{2}{1+2x}\ge8\\\)
3: Cho x,y>0 và x+y=1. CMR:
a)\(\dfrac{1}{xy}+\dfrac{2}{x^2+y^2}\ge8\)
b)\(\dfrac{1}{xy}+\dfrac{1}{x^2+y^2}\ge6\\ \)
4: CM các bđt sau: a) \(x^3+4x+1>3x^2\)
b)\(x^4-x+\dfrac{1}{2}>0\)
5: Cho a,b,c là độ dài 3 cạnh 1 tam giác. CMR:
a)\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
b)\(\dfrac{1}{a+b},\dfrac{1}{b+c},\dfrac{1}{c+a}\)là 3 cạnh của 1 tam giác(cần CM theo bđt tam giác)
6: Cho a,b,c,d>0 và abcd=1. CMR:
\(a^2+b^2+c^2+d^2+ab+cd\ge6\)
1: Cho x,y,z>0. CMR: \(\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)
2: Cho 0<x<\(\dfrac{1}{2}\). CMR: \(\dfrac{1}{x}+\dfrac{2}{1+2x}\ge8\\\)
3: Cho x,y>0 và x+y=1. CMR:
a)\(\dfrac{1}{xy}+\dfrac{2}{x^2+y^2}\ge8\)
b)\(\dfrac{1}{xy}+\dfrac{1}{x^2+y^2}\ge6\\ \)
4: CM các bđt sau: a) \(x^3+4x+1>3x^2\)
b)\(x^4-x+\dfrac{1}{2}>0\)
5: Cho a,b,c là độ dài 3 cạnh 1 tam giác. CMR:
a)\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
b)\(\dfrac{1}{a+b},\dfrac{1}{b+c},\dfrac{1}{c+a}\)là 3 cạnh của 1 tam giác(cần CM theo bđt tam giác)
6: Cho a,b,c,d>0 và abcd=1. CMR:
\(a^2+b^2+c^2+d^2+ab+cd\ge6\)
cho x,y,z là các số dương thỏa mãn \(x^2+y^2+z^2=3\) cmr \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\geq x^2+y^2+z^2\)
1. CMR:
a/ \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
b/ \(a^4+b^4+c^4+d^4\)\(\ge4abcd\)
2. cho a+b+c=0 . CMR : ab+bc+ca\(\le0\)
1) Cho x,y,z là độ dài 3 cạnh của 1 tam giác có tổng bằng 1. CMR:
\(x^2+y^2+z^2\le11\)
3) Cho x,y,z là các số \(\ge1\). CMR:
a) \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b) \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c) \(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
Cho x,y,z là các số thực thoả mãn:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(x+y-2z\right)^2+\left(y+z-2x\right)^2+\left(x+z-2y\right)^2\)
Chứng minh rằng x=y=z
Cho x,y,z là các số lớn hơn hoặc bằng 1. CMR:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+xy}\)
HELP ME!!!