Ta có :\(x+y+z=0=>x^2+y^2+z^2+2xy+2xz+2yz=0\)
=>\(1+2\left(xy+xz+yz\right)=0=>xy+yz+xz=-\frac{1}{2}\)
=>\(\left(xy+yz+xz\right)^2=-\frac{1}{4}=>x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz=-\frac{1}{4}\)=>\(x^2y^2+x^2z^2+y^2z^2+2zyz\left(x+y+z\right)=-\frac{1}{4}\)
=>\(x^2y^2+x^2z^2+y^2z^2=-\frac{1}{4}\)
Lại có:\(x^2+y^2+z^2=1=>\left(x^2+y^2+z^2\right)^2=1=>x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2=1\)
=>\(x^4+y^4+z^4+2\left(x^2y^2+x^2z^2+y^2z^2\right)=1\)
=>\(x^4+y^4+z^4+2\left(-\frac{1}{4}\right)=1\)
=>\(x^4+y^4+z^4=\frac{3}{2}\)
=>\(2\left(x^4+y^4+z^4\right)=\frac{9}{4}\)