Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Xuan Xuannajimex

Cho x,y,z thoa man \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\). Tinh M = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

Akai Haruma
27 tháng 12 2019 lúc 18:15

Lời giải:

Từ \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

\(\Rightarrow \left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)(x+y+z)=x+y+z\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{x}{y+z}(y+z)+\frac{y^2}{z+x}+\frac{y}{z+x}(z+x)+\frac{z^2}{x+y}+\frac{z}{x+y}(x+y)=x+y+z\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+(x+y+z)=x+y+z\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

Vậy $M=0$

Khách vãng lai đã xóa

Các câu hỏi tương tự
MInemy Nguyễn
Xem chi tiết
Phan Tiến Nhật
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết
Đinh Tuấn Việt
Xem chi tiết
Hạ Vy
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
mr. killer
Xem chi tiết
nguyen ha giang
Xem chi tiết
Achana
Xem chi tiết