\(\left\{{}\begin{matrix}x+y+z=1998\\2x+3y+4z=5992\end{matrix}\right.\)
\(1998\cdot2+y+2z=5992\)
\(y+2z=1996\) => y phải chắn
\(x>y>z>663\Rightarrow\left\{{}\begin{matrix}\left(1\right)\Rightarrow663< z\le665\\\left(2\right)y< 668\end{matrix}\right.\)
=> y=666 duy nhất => z=665; x=667