cho x,y,z là ba số dương thỏa mãn x+y+z=2019. Tìm giá trị nhỏ nhất của biểu thức
M= \(\frac{x}{x+\sqrt{2019+yz}}\) +\(\frac{y}{y+\sqrt{2019+zx}}\) + \(\frac{z}{z+\sqrt{2019+xy}}\)
ai biết làm thỉ chỉ em với nha, em cám ơn nhiều
1) Chứng minh : \(x^2+y^2\)≥\(2x\sqrt{yz}\) Với mọi x,y,z >0
2) Cho x+y+z = 2019 ;x,y,z >0
Tìm GTNN của P = \(\frac{x}{x+\sqrt{2019x+yz}}+\frac{y}{y+\sqrt{2019y+xz}}+\frac{z}{z+\sqrt{2019z+xy}}\)
Cho x,y,z là các số dương và xyz=1. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{xz}+x}\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho 3 số thực: x; y; z thỏa mãn: \(x\ge1;y\ge4;z\ge9\). Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{yz.\sqrt{x-1}+zx.\sqrt{y-4}+xy.\sqrt{z-9}}{xyz}\)
Với ba số dương x,y,z thỏa mãn x+y+z=1
Tìm GTLN của Q=\(\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+xz}}+\frac{z}{z+\sqrt{z+yz}}\)
Cho x,y,z là 3 số dương . Tìm Max của P=\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Tìm Max của M=\(\sqrt{x-2}+\sqrt{y+4}\) biết x+y=8
Cho các số thực dương x, y, z thỏa mãn \(\frac{12}{xy}+\frac{20}{yz}+\frac{15}{zx}\le1\). Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{3}{\sqrt{x^2+9}}+\frac{4}{\sqrt{y^2+16}}+\frac{5}{\sqrt{z^2+25}}\)