A=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)
A=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{1+xy+x}\)+\(\frac{1}{x+1+xy}\)
A=1
A=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)
A=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{1+xy+x}\)+\(\frac{1}{x+1+xy}\)
A=1
Cho 3 số x,y,z thỏa mãn x.y.z=2019. Tính giá trị biểu thức
\(P=\frac{2019x}{xy+2019x+2019}+\frac{y}{yz+y+2019}+\frac{z}{xz+z+1}\)
cho ba số dương \(0\le x\le y\le z\le1\) chứng minh \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{xy+1}{9}=\frac{xz+2}{15}=\frac{yz+3}{27}v\text{à}xy+yz+zx=11\)
Cho xyz = 1. Tính giá trị biểu thức :
P = \(\dfrac{1}{1+x+xy}\)+\(\dfrac{1}{1+y+yz}\)+\(\dfrac{1}{1+z+xz}\)
tìm x , y , z biết
a, 3x=4y , 3y =5z và x - y - z=1
b, \(\frac{x}{2}=\frac{y}{7}=\frac{5}{z}\) và yz - xy - z2 = 72
c, \(\frac{x}{2}=\frac{y}{7}=\frac{z}{8}\) và 2x2 + xy - xz = 54
d, \(\frac{x+3}{5}=\frac{y-4}{3}=\frac{z-5}{2}\) và 2x - 3y - z = -26
biết xyz=1
tính A=\(\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) tính
A = \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}\)
a) Tìm x, y biết: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
b) Tìm x, y,z biết: xy = z, yz = 9x, xz = 16y
Cho 3 so x, y, z thoa man xyz = 2018. CMR :
\(\dfrac{2018x}{xy+2018+2018z}+\dfrac{y}{yz+y+2018}+\dfrac{z}{xz+z+1}=1\)