Cho x,y,z dương thỏa mãn xy+yz+zx=2008. Chứng minh rằng giá trị biểu thức M không phụ thuộc vào x,y,z.
\(M=x\sqrt{\dfrac{\left(2008+y^2\right)\left(2008+z^2\right)}{2008+x^2}}+y\sqrt{\dfrac{\left(2008+z^2\right)\left(2008+x^2\right)}{2008+y^2}}+z\sqrt{\dfrac{\left(2008+x^2\right)\left(2008+y^2\right)}{2008+z^2}}\)
Cho các số thực x y z thỏa mãn x/2008=y/2009=z/2010 cmr z-x=2can(x-y)(y-z)
giải pt: \(\sqrt{x-2009}+\sqrt{y-2008}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Cho \(x;y;z\in\left[0;1\right]\).
Tìm max: \(A=x\sqrt{1-y}+y\sqrt{1-z}+z\sqrt{1-x}\)
Cho \(x,y,z\in R\) sao cho \(x+y+z+xy+yz+zx=5\)
Chứng minh rằng: \(x^2+y^2+z^2\ge3\)
cho x, y thỏa mãn : x^2/y + y^2/16 =36
Tìm GTNN,GTLN của S=x-y+2008
Cho \(\)x, y, z \(\in\) R thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\).
Hãy tính giá trị của biểu thức: M = \(\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
Tìm x,y \(\in Z\) sao cho\(\sqrt{y}+\sqrt{x}=\sqrt{2017}\)
cho các số x,y,z thoả mãn \(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}=0\)
tính giá trị biểu thức A=\(\dfrac{x}{\left(y-z\right)^2}+\dfrac{y}{\left(z-x\right)^2}+\dfrac{z}{\left(x-y\right)^2}\)