\(\frac{x}{2008}=\frac{y}{2009}=\frac{z}{2010}=\frac{z-x}{2}=\frac{x-y}{-1}=\frac{y-z}{-1}\)
\(\Rightarrow\left\{{}\begin{matrix}z-x=-2\left(x-y\right)\\z-x=-2\left(y-z\right)\end{matrix}\right.\) \(\Rightarrow\left(z-x\right)^2=4\left(x-y\right)\left(y-z\right)\)
\(\Rightarrow z-x=2\sqrt{\left(x-y\right)\left(y-z\right)}\)