Lời giải:
Ta có:
$A=x^3+y^3=(x+y)(x^2-xy+y^2)=2(x^2-xy+y^2)=2\left[\frac{1}{4}(x^2+2xy+y^2)+\frac{3}{4}(x^2-2xy+y^2)\right]$
$=2\left[\frac{(x+y)^2}{4}+\frac{3(x-y)^2}{4}\right]$
$\geq 2.\frac{(x+y)^2}{4}=\frac{(x+y)^2}{2}=\frac{2^2}{2}=2$
Vậy $A_{\min}=2$ khi $x=y=1$