\(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+1\right)\left(x^2-xy+y^2\right)-3x^2-3y^2\)
\(=2x^2-2xy+2y^2-3x^2-3y^2\) (Vì x+y=1 )
\(=-x^2-2xy-y^2\)
\(=-\left(x^2+2xy+y^2\right)\)
\(=-\left(x+y\right)^2\)
\(=-1^2=1\)
A\(=2\left(x+y\right)\left(x^2+y^2-xy\right)-3\left[\left(x+y\right)^2-2xy\right]\)
= \(2.1.\left[\left(x+y\right)^2-3xy\right]-3\left(1-2xy\right)\)
=\(2-6xy+6xy-3=-1\)
vậy A=-1