Đề phải cho \(x,y\) dương nữa!
Giải:
Ta có: \(xy\left(x+y\right)^2\le\dfrac{1}{64}\)
\(\Leftrightarrow\sqrt{xy\left(x+y\right)^2}\le\sqrt{\dfrac{1}{64}}\)
\(\Leftrightarrow\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)
Vậy ta cần chứng minh BĐT tương đương \(\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)
Áp dụng BĐT AM - GM ta có:
\(\sqrt{xy}\left(x+y\right)=\dfrac{1}{2}.2\sqrt{xy}\left(x+y\right)\)
\(\le\dfrac{1}{2}.\dfrac{x+y+2\sqrt{xy}}{4}=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}\) \(=\dfrac{1}{8}\)
\(\Rightarrow xy\left(x+y\right)^2\le\dfrac{1}{64}\) (Đpcm)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{4}\)