ĐKXĐ: \(x;y\ge16\)
\(4\left(x\sqrt{y-16}+y\sqrt{x-16}\right)=xy\)
\(\Leftrightarrow\frac{4\sqrt{y-16}}{y}+\frac{4\sqrt{x-16}}{x}=1\)
Mặt khác \(\frac{4\sqrt{y-16}}{y}+\frac{4\sqrt{x-16}}{x}\le\frac{16+y-16}{2y}+\frac{16+x-16}{2x}=\frac{1}{2}+\frac{1}{2}=1\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\sqrt{y-16}=4\\\sqrt{x-16}=4\end{matrix}\right.\) \(\Rightarrow x=y=32\)
\(\Rightarrow A=\left(32-33\right)^{2019}+\left(32-31\right)^{2020}=-1+1=0\)