Cho 3 số thực dương x,y,z thỏa mãn \(x^2+y^2+z^2\le3\) Tìm giá trị lớn nhất
\(H=\dfrac{y}{x^2+2y+3}+\dfrac{z}{y^2+2z+3}+\dfrac{x}{z^2+2x+3}\)
Tìm x, y, z biết
a/ x : y : z = 2 : 3 : (-4)
và x - y + z = -125
b/ \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)
và 3x - 2y + z = 4
c/ \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
và x + y + z =147
d/ \(2x=3y;5y=7z\)
và 3x - 7y + 5z = 30
Cho 3 số thực dương x,y,z thỏa mãn \(x+y+z=3\) Tìm giá trị nhỏ nhất của
\(P=\dfrac{\left(2x+3y+z\right)^3}{3\sqrt[3]{z^2x^2}+1}+\dfrac{\left(2y+3z+x\right)^3}{3\sqrt[3]{x^2y^2}+1}+\dfrac{\left(2z+3x+y\right)^3}{3\sqrt[3]{y^2z^2}+1}\)
cho \(\frac{x}{y+z}\)+\(\frac{y}{x+z}\)+\(\frac{z}{x+y}\)=1
tính 2019 + \(\frac{x^2}{y+z}\)+\(\frac{y^2}{z+x}\)+\(\frac{z^2}{x+y}\)
Cho \(x,y>0;x,y=4\). Tìm giá trị nhỏ nhất của \(A=x+y+x\sqrt{9+y^2}+y\sqrt{9+x^2}\)
Cho 3 số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=\frac{1}{\sqrt{xyz}}\)
Tìm giá trị lớn nhất của P = \(\frac{2\sqrt{x}}{1+x}+\frac{2\sqrt{y}}{1+y}+\frac{z-1}{z+1}\)
giải hệ phương trình:
2x^2=y+1/y
2y^2=x+1/x
Bài 1: Giải bất phương trình
\(\dfrac{|x+2|-|x|}{\sqrt{4-(x)^{3}}}>0\)
\(\dfrac{3}{|x+3|-1}>|x+2|\)
\(\dfrac{9}{|x-5|-3}>|x-2|\)
Bài 2: Tùy thuộc vào giá trị m hãy xác định số nghiệm của phương trình
\(|x^{2}-2x-3|=m\)
Cho x,y>=0. Thoả mãn 2/x+3/y=6. Tìm giá trị nhỏ nhất của x+y