Cho x,y >0. Rút gọn A=\(\sqrt{2\left(\sqrt{x^2+y^2}+x\right)\left(\sqrt{x^2+y^2}+y\right)}-\sqrt{x^2+y^2}-x-y+2020\)
Với mọi a, b, c, x, y, z \(\in\) R, chứng minh : \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\)
tìm x,y,z để biểu thức sau có giá trị bằng 2
\(A=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
1. Giải hpt : a) \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{2017}\\\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}=3+\sqrt[3]{xyz}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt[4]{x-1}+\sqrt{y^4+2}=y\\x^2+2x\left(y-1\right)+y^2-6y+1=0\end{matrix}\right.\)
cho a,b,c,x,y,z>0
\(\left\{{}\begin{matrix}x+y+z=a\\x^2+y^2+z^2=b\\a^2=b+3034\end{matrix}\right.\)
tính M=\(x\sqrt{\frac{\left(2017+y^2\right)\left(2017+z^2\right)}{2017+x^2}}+y\sqrt{\frac{\left(2017+x^2\right)\left(2017+z^2\right)}{2017+y^2}}+z\sqrt{\frac{\left(2017+y^2\right)\left(2017+x^2\right)}{2017+z^2}}\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a.rút gọn A
b. chứng minh A\(\ge0\)
Tính giá trị của biểu thức: \(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\), biết \(xy+\sqrt{\left(1+x^2\right).\left(1+y^2\right)}=a\)