Ta có: \(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{121}{4}\)
Tổng không đổi, tích lớn nhất khi x = y = 5,5
xy\(_{max}\) = 5,5\(^2\) =\(\frac{121}{4}\)
Ta có: \(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{121}{4}\)
Tổng không đổi, tích lớn nhất khi x = y = 5,5
xy\(_{max}\) = 5,5\(^2\) =\(\frac{121}{4}\)
Bài 1: Cho hàm số f(x) = ax5 + bx3 + cx có giá trị nguyên với mọi x nguyên và f(1), f(2), f(3) đạt giá trị lớn nhất khi a, b, c dương. Tìm a,b,c
Bài 2: Nếu x, y ∈ Z thỏa mãn 3x2 + x = 3y2 + y thì x - y; 2x + 2y + 1; 3x + 3y + 1 là các số chính phương
Dạ nhờ mọi người giúp dùm em bài này, em cảm ơn ạ
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{matrix}\right.\)
Tìm các giá trị của m để hệ phương trình có nghiệm thoả mãn điều kiện: \(S=x+y\) đạt giá trị lớn nhất
Cho hàm số y = (4m + 2) x2 với m ≠ -\(\dfrac{1}{2}\). Tìm các giá trị của tham số m để hàm số :
a) Nghịch biến với mọi x < 0
b) Đạt giá trị lớn nhất là 0
cho x,y là hai số thực dương thỏa mản x3+y3=xy-\(\dfrac{1}{27}\)
tính giá trị của biểu thức p=\(\left(x+y+\dfrac{1}{3}\right)^3-\dfrac{3}{2}\left(x+y\right)+2021\)
Cho phương trình :
x2 − 2x + 2 − m = 0 (x là ẩn số, m là tham số)
Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức:
2x13 +(m + 2)x2 2 = 5
Cho phương trình x²- 2x + m - 1 = 0 với M là tham số a, Tìm tất cả giá trị của tham số m để phương trình có hai nghiệm phân biệt x1 x2 thỏa mãn x1²+x2²-3x1x2= 2m²+|m-3|
Cho phương trình: \(^{x^2-4x+5m-2=0}\)( với m là tham số)
Tính giá trị của m để phương trình trên có ngiệm x1, x2 thỏa mãn x1^2x2+x1x2^2=12
( x một mũ hai nhân x hai +x1 nhân x2 mũ hai nha)
Bài 2: cho phương trình\(x^2-2\left(m+1\right)x+2m+10=0\)
a)Tìm m để phương trình có nghiệm này gấp 3 lần nghiệm kia
b)Tìm m để phương trình có 2 nghiệm thỏa mãn \(P=-x_1^2-x_2^2-10x_1x_2\) có giá trị lớn nhất
Cho 2 hàm số y = (k-2).x + k (k khác 2), y = (k+3).x - k (k khác -3). Với giá trị nào của k thì: a) đồ thị của hai hàm số cắt nhau tại 1 điểm trên trục tung. b) đồ thị của hai hàm số cắt nhau tại 1 điểm trên trục hoành. Mình sẽ tick cho những bạn nào giúp mình!