Lời giải:
$P=2x^4+x^3(2y-1)+y^3(2x-1)+2y^4$
$=2(x^4+y^4)+2xy(x^2+y^2)-(x^3+y^3)$
Trong đó:
$x^2+y^2=(x+y)^2-2xy=1-2xy
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=(1-2xy)^2-2x^2y^2$
$=2x^2y^2+1-4xy$
$x^3+y^3=(x+y)^3-3xy(x+y)=1-3xy$
Do đó: $P=2(2x^2y^2+1-4xy)+2xy(1-2xy)-(1-3xy)$
$=1-3xy$
Mà $(x+y)^2-4xy=(x-y)^2\geq 0$
$\Rightarrow 4xy\leq (x+y)^2=1\Rightarrow xy\leq \frac{1}{4}$
$\Rightarrow P=1-3xy\geq 1-3.\frac{1}{4}=\frac{1}{4}$
Vậy $P_{\min}=\frac{1}{4}$ khi $x=y=\frac{1}{2}$