Cho các số nguyên dương x, y, z thỏa mãn \(x^2+y^2=z^2\). Chứng minh rằng:
\(x+3z-y\) là hợp số.
Tìm các số nguyên dương x,y thỏa mãn điều kiện: 2^x+2^y=64
Cho 2 số x, y nguyên thỏa mãn (2x-3)2 + |y| = 1. Số cặp (x,y) thỏa mãn là ................. cặp
Các chữ số x;y thỏa mãn x3y chia hết cho 5 và x-y=6 là
A. x=6;y=0 B. x=0;y=6 C. x=1;y=5 D. x=5;y=1
Cho a,b,c,x,y,z là các số nguyên dương và 3 số a,b,c khác 1 thỏa mãn: \(a^x=bc;b^y=ca;c^z=ab\)
CMR:
x+y+z+2=xyz.
Tìm số nguyên dương x,y thỏa mãn 21^x+16^y-10=(Căn 3)^y!, biết y!=1.2.3...y
Cho 2 số nguyên dương x;y thỏa \(x^2+y^2-x⋮xy\).
CM : x là SCP
Cho 2 số x;y thỏa mãn \(\left|\left(3x+4\right)^2+\left|y-5\right|\right|=1\) . Số cặp x;y thỏa mãn là.?.
Hãy tìm một đơn thức với các biến là x,y thỏa mãn các điều kiện sau: - số mũ của x và y tỉ lệ với 2 và 3/2 - số mũ của x lớn hơn số mũ của y là 1 - giá trị của đơn thức tại x=2, y=-3 bằng 1296