cho x,y là số hữu tỷ khác 1 thỏa mãn: \(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
CMR: M = x2 +y2 - xy là bình phương 1 số hữu tỉ
cho x, y là các số hữu tỉ thỏa mãn : x^2 + y^2 + ( xy+1/x+y) =2 . Chứng minh rằng 1+xy là bình phương của một số hữu tỉ
1) Cho x,y là số hữ tỷ khác 1 thỏa mãn:
\(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)
Chứng minh A= x2 +y2 -xy là bình phương của 1 số hữu tỷ
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
Bài 1: Cho \(\text{A}=\dfrac{3}{2x+2}+\dfrac{5x}{x^2-1}-\dfrac{5}{2x-2}\)
a. Rút gọn
b. Tìm x để \(\dfrac{P}{2}=\dfrac{3}{x^2+2}\)
Bài 2: Chứng minh rằng (\(\left(\dfrac{x^3-y^3}{x-y}+xy\right).\left(\dfrac{x-y}{x^2-y^2}\right)^2=1\)
Cho x; y là các số nguyên dương thả mãn: \(\dfrac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên> Tính Giá trị của A = \(\dfrac{2010xy}{2009x^2+2011y^2}\)
Cho x,y là cấc số hữu tỉ khác 0 thỏa mãn x^5+y^5=2×x^3×y^3 . Chứng minh nếu m=1-1/xy thì m là bình phương của 1 số hữu tỉ
Cho số thực x và y thỏa mãn \(x\ne y;x\ne0;y\ne0\)
CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)