\(P=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)
\(=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\)
\(=y+x+\frac{2}{x+y}\ge2\sqrt{\left(x+y\right)\cdot\frac{2}{x+y}}=2\sqrt{2}\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}xy=1\\\left(x+y\right)^2=2\end{matrix}\right.\)
\(x+y\ge2\sqrt{xy}=2\)
\(P=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}=x+y+\frac{2}{x+y}=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)
\(P\ge\frac{2}{2}+2\sqrt{\frac{\left(x+y\right)}{2}.\frac{2}{\left(x+y\right)}}=3\)
\(\Rightarrow P_{min}=3\) khi \(x=y=1\)