\(Q\ge\frac{1}{2}\left(x+\frac{2}{x}+y+\frac{2}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{8}{x+y}\right)^2\)
\(Q\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}+\frac{4}{x+y}\right)^2\)
\(Q\ge\frac{1}{2}\left(2\sqrt{\frac{4\left(x+y\right)}{x+y}}+\frac{4}{2}\right)^2=18\)
\(Q_{min}=18\) khi \(x=y=1\)